On Weak Exponential Expansiveness of Evolution Families in Banach Spaces

نویسندگان

  • Tian Yue
  • Xiao-qiu Song
  • Dong-qing Li
چکیده

The aim of this paper is to give several characterizations for the property of weak exponential expansiveness for evolution families in Banach spaces. Variants for weak exponential expansiveness of some well-known results in stability theory (Datko (1973), Rolewicz (1986), Ichikawa (1984), and Megan et al. (2003)) are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Stability, Exponential Expansiveness, and Exponential Dichotomy of Evolution Equations on the Half-line

For an evolution family on the half-line U = (U(t; s)) ts0 of bounded linear operators on a Banach space X we introduce operators G 0 ; G X and I X on certain spaces of X-valued continuous functions connected with the integral equation u(t) = U(t; s)u(s) + R t s U(t;)f()dd: We characterize exponential stability, exponential expansiveness and exponential dichotomy of U by properties of G 0 ; G X...

متن کامل

Banach Function Spaces and Datko-type Conditions for Nonuniform Exponential Stability of Evolution Families

For nonuniform exponentially bounded evolution families defined on Banach spaces, we introduce a class of Banach function spaces, whose norms are uniquely determined by the nonuniform behavior of the corresponding evolution family. We generalize the classical theorem of Datko on these spaces.

متن کامل

Pairs of Function Spaces and Exponential Dichotomy on the Real Line

We provide a complete diagram of the relation between the admissibility of pairs of Banach function spaces and the exponential dichotomy of evolution families on the real line. We prove that if W ∈ H R and V ∈ T R are two Banach function spaces with the property that either W ∈ W R or V ∈ V R , then the admissibility of the pair W R, X , V R, X implies the existence of the exponential dichotomy...

متن کامل

On Uniform Exponential Stability of Periodic Evolution Operators in Banach Spaces

The aim of this paper is to obtain some discrete-time characterizations for the uniform exponential stability of periodic evolution operators in Banach spaces. We shall also obtain a discrete-time variant for Neerven’s theorem using Banach sequence spaces and a new proof for Neerven’s theorem.

متن کامل

On the Robustness of Exponential Dichotomies

For linear evolution families in Banach spaces, we establish the robustness of a weaker notion of exponential dichotomy. This notion allows the contraction and expansion along the stable and unstable subspaces to be nonuniform and requires nothing from the angles between these subspaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013